奇酷教育-Python培训|UI培训|WEB大前端培训|Unity3D培训|HTML5培训|人工智能培训|JAVA开发的教育品牌

您現在所在的位置:首頁 >關于奇酷 > 行業動態 > PyTorch 2.0發布了!一行代碼提速76%

PyTorch 2.0發布了!一行代碼提速76%

來源:奇酷教育 發表于:

PyTorch 2 0發布了!一行代碼提速76%

  12月2日,PyTorch 2.0正式發布!

 
  這次的更新不僅將PyTorch的性能推到了新的高度,同時也加入了對動態形狀和分布式的支持。
 
  此外,2.0系列還會將PyTorch的部分代碼從C++移回Python。
 
  
 
  目前,PyTorch 2.0還處在測試階段,預計第一個穩定版本會在2023年3月初面世。
 
  PyTorch 2.x:更快、更Python!
 
  在過去的幾年里,PyTorch從1.0到最近的1.13進行了創新和迭代,并轉移到新成立的PyTorch基金會,成為Linux基金會的一部分。
 
  當前版本的PyTorch所面臨的挑戰是,eager-mode難以跟上不斷增長的GPU帶寬和更瘋狂的模型架構。
 
  而PyTorch 2.0的誕生,將從根本上改變和提升了PyTorch在編譯器級別下的運行方式。
 
  眾所周知,PyTorch中的(Py)來自于數據科學中廣泛使用的開源Python編程語言。
 
  然而,PyTorch的代碼卻并沒有完全采用Python,而是把一部分交給了C++。
 
  不過,在今后的2.x系列中,PyTorch項目團隊計劃將與torch.nn有關的代碼移回到Python中。
 
  除此之外,由于PyTorch 2.0是一個完全附加的(和可選的)功能,因此2.0是100%向后兼容的。
 
  也就是說,代碼庫是一樣的,API也是一樣的,編寫模型的方式也是一樣的。
 
  更多的技術支持
 
  TorchDynamo
 
  使用Python框架評估鉤子安全地捕獲PyTorch程序,這是團隊5年來在graph capture方面研發的一項重大創新。
 
  AOTAutograd
 
  重載了PyTorch的autograd引擎,作為一個追蹤的autodiff,用于生成超前的反向追蹤。
 
  PrimTorch
 
  將約2000多個PyTorch運算符歸納為約250個原始運算符的封閉集,開發人員可以針對這些運算符構建一個完整的PyTorch后端。大大降低了編寫PyTorch功能或后端的障礙。
 
  TorchInductor
 
  一個深度學習編譯器,可以為多個加速器和后端生成快速代碼。對于英偉達的GPU,它使用OpenAI Triton作為關鍵構建模塊。
 
  值得注意的是,TorchDynamo、AOTAutograd、PrimTorch和TorchInductor都是用Python編寫的,并支持動態形狀。
 
  更快的訓練速度
 
  通過引入新的編譯模式「torch.compile」,PyTorch 2.0用一行代碼,就可以加速模型的訓練。
 
  這里不用任何技巧,只需運行torch.compile()即可,僅此而已:
 
  opt_module = torch.compile(module)
 
  為了驗證這些技術,團隊精心打造了測試基準,包括圖像分類、物體檢測、圖像生成等任務,以及各種NLP任務,如語言建模、問答、序列分類、推薦系統和強化學習。其中,這些基準可以分為三類:
 
  來自HuggingFace Transformers的46個模型
 
  來自TIMM的61個模型:Ross Wightman收集的最先進的PyTorch圖像模型
 
  來自TorchBench的56個模型:github的一組流行代碼庫
 
  測試結果表明,在這163個跨越視覺、NLP和其他領域的開源模型上,訓練速度得到了38%-76%的提高。
 
  
 
  在NVIDIA A100 GPU上的對比
 
  此外,團隊還在一些流行的開源PyTorch模型上進行了基準測試,并獲得了從30%到2倍的大幅加速。
 
  開發者Sylvain Gugger表示:「只需添加一行代碼,PyTorch 2.0就能在訓練Transformers模型時實現1.5倍到2.0倍的速度提升。這是自混合精度訓練問世以來最令人興奮的事情!」
 
  團隊之所以稱它為 2.0,是因為它有一些標志性的新特性,包括:
 
  TorchDynamo 可以從字節碼分析生成 FX 圖;
 
  AOTAutograd 可以以 ahead-of-time 的方式生成反向圖;
 
  PrimTorch 引入了一個小型算子集,使后端更容易;
 
  TorchInductor:一個由 OpenAI Triton 支持的 DL 編譯器。
 
  PyTorch 2.0 將延續 PyTorch 一貫的優勢,包括 Python 集成、命令式風格、API 簡單等等。此外,PyTorch 2.0 提供了相同的 eager-mode 開發和用戶體驗,同時從根本上改變和增強了 PyTorch 在編譯器級別的運行方式。該版本能夠為「Dynamic Shapes」和分布式運行提供更快的性能和更好的支持。
 
  在官方博客中,PyTorch團隊還公布了他們對于整個2.0系列的展望:
 
 
 
  以下是詳細內容。
 
  PyTorch 2.X:速度更快、更加地 Python 化、一如既往地 dynamic
 
  PyTorch 2.0 官宣了一個重要特性——torch.compile,這一特性將 PyTorch 的性能推向了新的高度,并將 PyTorch 的部分內容從 C++ 移回 Python。torch.compile 是一個完全附加的(可選的)特性,因此 PyTorch 2.0 是 100% 向后兼容的。
 
  支撐 torch.compile 的技術包括研發團隊新推出的 TorchDynamo、AOTAutograd、PrimTorch 和 TorchInductor。
 
  TorchDynamo 使用 Python Frame Evaluation Hooks 安全地捕獲 PyTorch 程序,這是一項重大創新,是研究團隊對快速可靠地獲取圖進行 5 年研發的結果;
 
  AOTAutograd 重載 PyTorch 的 autograd 引擎作為一個跟蹤 autodiff,用于生成 ahead-of-time 向后跟蹤;
 
  PrimTorch 將約 2000 多個 PyTorch 算子規范化為一組約 250 個原始算子的閉集,開發人員可以將其作為構建完整 PyTorch 后端的目標。這大大降低了編寫 PyTorch 特性或后端的障礙;
 
  TorchInductor 是一種深度學習編譯器,可為多個加速器和后端生成快速代碼。對于 NVIDIA GPU,它使用 OpenAI Triton 作為關鍵構建塊。
 
  TorchDynamo、AOTAutograd、PrimTorch 和 TorchInductor 是用 Python 編寫的,并支持 dynamic shapes(即能夠發送不同大小的張量而無需重新編譯),這使得它們具備靈活、易于破解的特性,降低了開發人員和供應商的使用門檻。
 
  為了驗證這些技術,研發團隊在各種機器學習領域測試了 163 個開源模型。實驗精心構建了測試基準,包括各種 CV 任務(圖像分類、目標檢測、圖像生成等)、NLP 任務(語言建模、問答、序列分類、推薦系統等)和強化學習任務,測試模型主要有 3 個來源:
 
  46 個來自 HuggingFace Transformers 的模型;
 
  來自 TIMM 的 61 個模型:一系列 SOTA PyTorch 圖像模型;
 
  來自 TorchBench 的 56 個模型:包含來自 github 的精選流行代碼庫。
 
  然后研究者測量加速性能并驗證這些模型的準確性。加速可能取決于數據類型,研究團隊選擇測量 float32 和自動混合精度 (AMP) 的加速。
 
  在 163 個開源模型中,torch.compile 在 93% 的情況下都有效,模型在 NVIDIA A100 GPU 上的訓練速度提高了 43%。在 float32 精度下,它的平均運行速度提高了 21%,而在 AMP 精度下,它的運行速度平均提高了 51%。
 
  目前,torch.compile 還處于早期開發階段,預計 2023 年 3 月上旬將發布第一個穩定的 2.0 版本。
 
  TorchDynamo:快速可靠地獲取圖
 
  TorchDynamo 是一種使用 Frame Evaluation API (PEP-0523 中引入的一種 CPython 特性)的新方法。研發團隊采用數據驅動的方法來驗證其在 Graph Capture 上的有效性,并使用 7000 多個用 PyTorch 編寫的 Github 項目作為驗證集。TorchScript 等方法大約在 50% 的時間里都難以獲取圖,而且通常開銷很大;而 TorchDynamo 在 99% 的時間里都能獲取圖,方法正確、安全且開銷可忽略不計(無需對原始代碼進行任何更改)。這說明 TorchDynamo 突破了多年來模型權衡靈活性和速度的瓶頸。
 
  TorchInductor:使用 define-by-run IR 快速生成代碼
 
  對于 PyTorch 2.0 的新編譯器后端,研發團隊從用戶編寫高性能自定義內核的方式中汲取靈感:越來越多地使用 Triton 語言。此外,研究者還想要一個編譯器后端——使用與 PyTorch eager 類似的抽象,并且具有足夠的通用性以支持 PyTorch 中廣泛的功能。
 
  TorchInductor 使用 pythonic define-by-run loop level IR 自動將 PyTorch 模型映射到 GPU 上生成的 Triton 代碼和 CPU 上的 C++/OpenMP。TorchInductor 的 core loop level IR 僅包含約 50 個算子,并且是用 Python 實現的,易于破解和擴展。
 
  AOTAutograd:將 Autograd 重用于 ahead-of-time 圖
 
  PyTorch 2.0 的主要特性之一是加速訓練,因此 PyTorch 2.0 不僅要捕獲用戶級代碼,還要捕獲反向傳播。此外,研發團隊還想要復用現有的經過實踐檢驗的 PyTorch autograd 系統。AOTAutograd 利用 PyTorch 的 torch_dispatch 可擴展機制來跟蹤 Autograd 引擎,使其能夠「ahead-of-time」捕獲反向傳遞(backwards pass)。這使 TorchInductor 能夠加速前向和反向傳遞。
 
  PrimTorch:穩定的原始算子
 
  為 PyTorch 編寫后端具有挑戰性。PyTorch 有 1200 多個算子,如果考慮每個算子的各種重載,則有 2000 多個。
 
  在 PrimTorch 項目中,研發團隊致力于定義更小且穩定的算子集,將 PyTorch 程序縮減到這樣較小的算子集。目標是定義兩個算子集:
 
  Prim ops:約有 250 個相當低級的算子。這些算子適用于編譯器,需要將它們重新融合在一起以獲得良好的性能;
 
  ATen ops:約有 750 個規范算子。這些算子適用于已經在 ATen 級別集成的后端或沒有編譯功能的后端(無法從較低級別的算子集(如 Prim ops)恢復性能)。
 

主站蜘蛛池模板: 大通天成企业资质代办_承装修试电力设施许可证_增值电信业务经营许可证_无人机运营合格证_广播电视节目制作许可证 | 紧急切断阀_气动切断阀_不锈钢阀门_截止阀_球阀_蝶阀_闸阀-上海上兆阀门制造有限公司 | 导电银胶_LED封装导电银胶_半导体封装导电胶厂家-上海腾烁 | 铝镁锰板_铝镁锰合金板_铝镁锰板厂家_铝镁锰金属屋面板_安徽建科 | 办公室家具_板式办公家具定制厂家-FMARTS福玛仕办公家具 | 玉米深加工设备-玉米深加工机械-新型玉米工机械生产厂家-河南粮院机械制造有限公司 | 软文发布平台 - 云软媒网络软文直编发布营销推广平台 | uv固化机-丝印uv机-工业烤箱-五金蚀刻机-分拣输送机 - 保定市丰辉机械设备制造有限公司 | 石家庄律师_石家庄刑事辩护律师_石家庄取保候审-河北万垚律师事务所 | 微量水分测定仪_厂家_卡尔费休微量水分测定仪-淄博库仑 | 能耗监测系统-节能监测系统-能源管理系统-三水智能化 | 定制液氮罐_小型气相液氮罐_自增压液氮罐_班德液氮罐厂家 | 直流大电流电源,燃料电池检漏设备-上海政飞| 挤出机_橡胶挤出机_塑料挤出机_胶片冷却机-河北伟源橡塑设备有限公司 | 蒸汽吸附分析仪-进口水分活度仪|康宝百科| PVC地板|PVC塑胶地板|PVC地板厂家|地板胶|防静电地板-无锡腾方装饰材料有限公司-咨询热线:4008-798-128 | 干法制粒机_智能干法制粒机_张家港市开创机械制造有限公司 | 煤矿支护网片_矿用勾花菱形网_缝管式_管缝式锚杆-邯郸市永年区志涛工矿配件有限公司 | 深圳货架厂_仓库货架公司_重型仓储货架_线棒货架批发-深圳市诺普泰仓储设备有限公司 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 数码听觉统合训练系统-儿童感觉-早期言语评估与训练系统-北京鑫泰盛世科技发展有限公司 | 深圳天际源广告-形象堆头,企业文化墙,喷绘,门头招牌设计制作专家 | 华夏医界网_民营医疗产业信息平台_民营医院营销管理培训 | 数字展示在线_数字展示行业门户网站 | 谈股票-今日股票行情走势分析-牛股推荐排行榜 | 网站建设-临朐爱采购-抖音运营-山东兆通网络科技 | 酒糟烘干机-豆渣烘干机-薯渣烘干机-糟渣烘干设备厂家-焦作市真节能环保设备科技有限公司 | 六维力传感器_三维力传感器_二维力传感器-南京神源生智能科技有限公司 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 磁粉制动器|张力控制器|气胀轴|伺服纠偏控制器整套厂家--台灵机电官网 | 高低温万能试验机-复合材料万能试验机-馥勒仪器 | 气动球阀_衬氟蝶阀_调节阀_电动截止阀_上海沃托阀门有限公司 | 德国UST优斯特氢气检漏仪-德国舒赐乙烷检测仪-北京泽钏 | 郑州大巴车出租|中巴车租赁|旅游大巴租车|包车|郑州旅游大巴车租赁有限公司 | LED太阳能中国结|发光红灯笼|灯杆造型灯|节日灯|太阳能灯笼|LED路灯杆装饰造型灯-北京中海轩光电 | 非小号行情 - 专业的区块链、数字藏品行情APP、金色财经官网 | 防水套管厂家-柔性防水套管-不锈钢|刚性防水套管-天翔管道 | 台式低速离心机-脱泡离心机-菌种摇床-常州市万丰仪器制造有限公司 | 板式换热器_板式换热器价格_管式换热器厂家-青岛康景辉 | 智慧养老_居家养老_社区养老_杰佳通 |